\boldsymbol{X}-Ray Grystal and Molecular Structure Determination of a Novel Bicyclic System. 2-p-Bromophenyl-1,3-Diazabicyclo[3,1,0] Hexane

S. A. Hiller, Ya. Ya. Bleidelis, A. A. Kemme, and A. V. Eremeyev
(Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR)

Summary The crystal and molecular structure as well as the conformation of $2-p$-bromophenyl-1,3-diazabicyclo$[3,1,0]$ hexane $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{Br}$, have been determined by X-ray structure analysis; the 1,3 -diazabicyclo[3,1,0]hexane fragment of the molecule has the boat conformation, and the benzene ring orients itself in the exoposition to the heterohexane bicycle.

As part of our study on condensed three-membered and five-membered heterocycles with a common nitrogen atom, ${ }^{1}$ we now report the X-ray structure analysis of 2 - p-bromo-phenyl-1,3-diazabicyclo[3,1,0]hexane.

Crystal data. Colourless monoclinic crystals with $a=$ $10 \cdot 779(2), b=8.638(2), c=12 \cdot 000(2) \AA, \beta=121 \cdot 263(13)^{\circ}$, $U=955 \cdot 0 \AA^{3}, \quad M=239 \cdot 15, \quad D_{\mathrm{c}}=1.66 \mathrm{~g} \mathrm{~cm}^{-3}, \quad Z=4$, $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=60.7 \mathrm{~cm}^{-1}$, space group $P 2_{1} / c$.

The three-dimensional range of intensities (1047 independent non-zero reflections) was obtained by the method of $\theta / 2 \theta$ scanning on a Syntex-automated four-circle diffractometer $\mathrm{P} 2_{1}$ using monochromatic cupric radiation.

The structure was solved by direct methods in the on line mode using the system XTL and the program MULTAN; ${ }^{2}$ computations used 965 observed reflections with $I \geqslant 1.96 \sigma$; the model was refined by least-squares to an R value of 0.034 (anisotropic approximation).

The molecular geometry is shown in the Figure. The 1,3 -diazabicyclo $[3,1,0]$ hexane fragment of the molecule is in the boat conformation slightly curved in the direction of $\mathrm{C}(2)-\mathrm{C}(4)$. The benzene ring orients itself in the exoposition to the heterohexane bicycle. The angle between the planes $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$ and $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(4)$ is $104 \cdot 7^{\circ}$;
between $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ and $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) 28.9^{\circ}$; between $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(4)$ and $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) 4 \cdot 5^{\circ}$; and between the benzene ring and the plane $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) 72 \cdot 3^{\circ}$. The

Figure
structure is a molecular one. Some shorter intermolecular distances such as $\mathrm{N}(2) \ldots \mathrm{Br}=3.2 \AA$ and $\mathrm{N}(2) \ldots \mathrm{N}(1)=$ $3 \cdot 1 \AA$, indicate the presence of steric hindrance in the molecular packing.
(Received, 19th November 1974; Com. 1404.)
${ }^{1}$ S. A. Hiller, M. Yu. Lidak, A. V. Eremeyev, and V. A. Kholodnikov, Khim. geterotsikl. Soedinenii, 1972, 483.
${ }^{2}$ G. Germain, P. Main, and M. H. Woolfson, Acta Cryst., 1970, B26, 274.

